UDC 547.81.7.07

N. V. Kholodova, Yu. P. Andreichikov, and G. N. Dorofeenko

Modified methods for the synthesis of substituted 2- and 4-carboxypyrylium perchlorates and the necessary diphenacylacetic acids are proposed.

The presently known methods for the synthesis of α - and γ -substituted carboxypyrylium salts consist in dehydrogenation of the corresponding carboxypyrans [1, 2], cyclization and oxidative dehydrogenation of diphenacylacetic acids [3], and acid condensation of benzalace-tophenone with pyruvic acid [4]. However, these methods are distinguished by their complexity and in most cases are restricted to only particular examples.

In the present paper we propose modified and rather general methods for the synthesis of substituted 2- and 4-carboxypyrylium perchlorates and the necessary diphenacylacetic acids.

We have found that the simplest method for the preparation of 4,6-diaryl-2-carboxypyrylium salts (Table 1) is the reaction of chalcones with pyruvic acid or its methyl and ethyl esters. Triphenylmethyl perchlorate $(Tr^+C10_4^-)$ in glacial acetic acid was used as the condensing and dehydrogenating agent. Benzalpyruvic acid, which reacts with various ketones to give 2-carboxypyrylium salts, can also be used as the chalcone.

The reaction proceeds via the scheme

Attempts to subject benzalacetone to reaction with pyruvic acid did not lead to the production of 2-carboxypyrylium salts, since benzalacetone undergoes self-condensation to give 2,6-distyryl-4-phenylpyrylium salts; this was confirmed by alternative synthesis from the 2,6-dimethyl-4-phenylpyrylium salt and benzaldehyde. The characteristics of the synthesized 2-styryl-4-phenyl-6-methylpyrylium and 2,6-distyryl-4-phenylpyrylium perchlorates are in agreement with the literature data [5].

4-Carboxypyrylium salts were synthesized by the reaction of benzoylacrylic acid with ketones. However, the yields of the pyrylium salts are low ($\approx 10\%$) in the case of one-step acid condensation. The rate-determining step of this reaction is probably addition of the ketones to the double bond of benzoylacrylic acid (the Michael reaction). This is confirmed by the fact that carrying out the reaction in two steps — addition of the ketones in an alka-line medium to give diphenacylacetic acids II (Table 2) and subsequent cyclodehydrogenation and aromatization — increases the yields of the 4-carboxypyrylium salts considerably (Table 3).

The 4-unsubstituted 2-carboxypyrylium salt was obtained by condensation of o-hydroxynaphthaldehyde with pyruvic acid in the presence of acetic anhydride and 70% perchloric acid.

Rostov State University. Scientific-Research Institute of Physical and Organic Chemistry, Rostov-on-Don 344006: Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 162-166, February, 1981. Original article submitted July 9, 1980.

Com-			-		IR sF acte	ristic	n (ch freque	ar- 3n-	ц	onnd, %		T	Calc	culated, %		
punod	R	۳2 ۲2	۲ ۲	mp, °C	C:0	pyril- ium ring	C=C	НО	υ	н	σ	formula	υ	H	U	Yield, %
a a constant and a co	$\begin{array}{c} {\mathbb G}_{H_5} \\ {\mathbb G}_{G_{H_5}} \\ {\mathbb G}_{G_{H_3}} \\ {\mathbb G}_{G_{H_3}} \\ {\mathbb P}^{-ClC_{G_{H_4}}} \\ {\mathbb P}^{-ClC_{G_{H_4}}} \\ {\mathbb P}^{-ClC_{G_{H_4}}} \\ {\mathbb P}^{-ClC_{G_{H_4}}} \\ {\mathbb G}_{G_{H_3}} \\$	нн С.Н. С.Н.	CeHs P-N02CeH4 P-N02CeH4 P-N1CH3) pCeH4 P-CH30CeH4 P-CH30CeH4 P-CH30CeH4 P-CH30CeH4 P-CH30CeH3 CeH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5	246-247a 169-170a 237-238a 237-238a 280-282a 380-282a 336-282a 336-252a 177-178a 313-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 312-315c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325c 325-325-325c 325-325-325 325-325-325-325-325-325-325-325-325-325-	0011100 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 1000000	1610 1630 1630 1630 1630 1630 1630 1630	1740 11700 1740 1740 1740 1740 1740 1740	33450 33500 35500 35500 35500 35500 35500 35500 35500 35500 35500 35500 35500 35500 35500 35500 3550000 355000 355000 355000 3550000 3550000 355000 35500000000	2412 252 252 252 252 252 252 252 252 252 2	ಀೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢೢ ೲೲ೮೦ <i>৮ ৮</i> ೲೲೲ೦ <i>৮</i> 4 4 ಬ ৮ ۷ ೲ	ο. ∞α.∞.∞.α	C C C C C C C C C C C C C C C C C C C	55,1,2,5 55,1,2,5 55,1,2,5 55,1,5,5,5 55,1,5,5,5 55,1,5,5,5,5	టల14.టటట4.లల1.టటట4.టల4.ట గౌత బి ৮ ৮ లె 6 తె లె	0 8 8 8 8 8 7 8 7 8 7 8 8 8 8 8 8 8 8 9 7 9 7	8002224442306533882805 800222442366533888 800222442366533888 8002244455
^a From trum	glacial acet of Im: 2.3 (itc ac 3H, s	cid. ^b From etl 3, CH ₃), 7.35 (hanol-nit (5H, s, C	rome sH ₃)	than , 7.9	6 <mark>7</mark> 6 7	:1). H, d,	^{cFrom} , C ₆ H ₄)	glacia , and 8	il aceti .17 ppn	lc acid—aceto n (1H, s, pyr	nitrile ylium r	(2:1). ing).	dpMR	spec-

TABLE 1. 2-Carboxypyrylium Perchlorates

Com -	Ē	Ê	mp,	Found, 🕫	Empirical	Calc.	0/0	Yield,
punod	. Yr	R.	ပံ	c H	formula	0	H	<i>م</i> /ہ
lla	C ₆ H ₅ C ₆ H	Н	138 - 140	72,6 5,4	C ₁₈ H ₁₆ O ₄	72,9	5,4	Quant.
	$3,4-CH_{3}OC_{6}H_{3}$ 3,4-(CH_{3}O)_{2}C_{6}H_{3}	CID	144—145	67,0 5,4	C10H2006	67,4	0.01 1.00 1.00	ری Quant.
lle	p-CH ₃ C ₆ H ₄	CII	110-113	69,8 5,6		69,9	4.00.4 0.10 0	oo Quant.
1100 The second	$p^{-D1} - (CH_2)_{3} - (CH_2)_{4} - (CH_2)$	4	162 - 164 162 - 164 129 - 130	69,9 5,9 6,4	ClsHl604 ClsHl604 ClsHl804	69,5 70,0	6,0 4,2 0,0 0,0 0,0	ζμαιι. 60 83
1			- • •	- (•		
Inoa	101 CT TO 200	Caro	ситатео		LU.0%	inna:	рд Ц	• %7 • 77
Calct	ilated: Br 21	.3%.						

TABLE 2. Diphenacylacetic Acids

TABLE 3. 4-Carboxypyrylium Perchlorates

	Yield,	do	76 76 23 33 36 65 65 65 65 65 0u ant. 43
	0/0	halogen	0,044 0,056 0,0000000000
	alculated,	н	87.000.07.440.4 87.000.07.440.4
	Ŭ	υ	887.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0
	Empirical	formula	C 18H 18C107 C 18H 18C107 C 28H 16C104 C 28H 16C109 C 28H 12C1209 C 28H 12C1207 C 28H 22C1207 C 28H 22C1001 C 28H 25C1001 C 18H 15C107 C 18H 15C10
		halogen	9005529900 100527377 9005229990
	und, %	H	ಀೢಀೢಀೢ <i>4ೢಀೢಀೢಀೢ</i> 4ೢಀೢ4 ೲ4ೲ∽07,ೲೲ೮7,6
	Fо	υ	55,1 55,1 55,1 55,5 55,5 55,5 55,5 55,5
	eristic	НО	3500 3440 3440 34500 34500 34500 34500 34500 34500 34500 34500 34500 34500 34500 34500
	haracte , cm -1	c=0	$\begin{array}{c} 1750\\ 1770\\ 1770\\ 1770\\ 1740\\ 1780\\$
1	ctra (c encies),	Pyr - ylium ring	1600 1620 1620 1620 1620 1590 1590 1605 1605 1605
	IR spe freque	CIO4	0601 0601 0601 0601 0601 0601 0601
	(ר du	$\begin{array}{c} 276-277 \\ 208-210 \\ 208-210 \\ 223-224 \\ 281-283 \\ 281-283 \\ 281-283 \\ 281-280 \\ 291-250 \\ 290-210 \\ 204-205 \\ 204-205 \\ 200 \\ 290-300 \\ 10 \\ 240-242 \\ 240-240 \\ 240-240 \\ 240-240 $
		R2	H H H H G ₆ H ₅ $_{2}^{12}$ $_{2}^{2}$ $_{2}^{12}$ $_{2}^{12}$ $_{2}^{12}$ $_{2}^{12}$ $_{2}^{12}$
THE SE T COLLOCATED	i	ž	$\begin{array}{c} C_{6}H_{5}\\ P-CH_{3}OC_{6}H_{4}\\ 3,4-(CH_{3}O)_{2}C_{6}H_{3}\\ P-CH_{3}C_{6}H_{4}\\ P-CIC_{6}H_{4}\\ P-BrC_{6}H_{4}\\ 2,4-(CH_{3}O)_{2}C_{6}H_{3}\\ 3,4-(CH_{3}O)_{2}C_{6}H_{3}\\ 3,4-(CH_{3}O)_{2}C_{6}H_{3}\\$
	Com - pound		III ad II

^aAccording to the data in [3], this compound had mp 277°C [from glacial acetic acid-nitromethane (1:1)]. ^bFrom glacial acetic acid. ^cFrom ethanol. ^dPMR spectra: IIIb 3.5 (3H, s, CH₃O), 6.87 (5H, s, C₆H₅), 7.8 (4H, d, C₆H₅), and 8.27 ppm (2H, s, pyrylium ring); IIId 2.0 (3H, s, CH₃), 7.47 (5H, s, C₆H₅), 8.0 (4H, d, C₆H₄), and 8.5 ppm (2H, s, pyrylium ring). ring).

The synthesized 2- and 4-carboxypyrylium salts are extremely reactive compounds and have luminescence in organic solvents. However, under the influence of UV light they lose their luminescence properties, probably as a consequence of the facile splitting out of a molecule of acid with the formation of betaine structures.

Further studies of the chemical properties of 2- and 4-carboxypyrylium salts make it possible to hope that they have high reactivity; this is important for the development of new preparative methods in the chemistry of heterocyclic compounds [6, 7].

EXPERIMENTAL

The PMR spectra of solutions of the compounds in trifluoroacetic acid were recorded with a Tesla BS-467 spectrometer (60 MHz) with hexamethyldisiloxane as the internal standard. The IR spectra of mineral oil suspensions of the compounds were recorded with a UR-20 spectrometer.

2-Carboxypyrylium Perchlorates (Ia-q). A mixture of 0.01 mole of the corresponding chalcone, 0.01 mole of pyruvic acid, 0.015 mole of triphenylmethyl perchlorate, and 15 ml of glacial acetic acid was heated for 20 min, after which it was cooled, and the precipitate was removed by filtration, washed with glacial acetic acid and ether, and recrystallized from a suitable solvent (Table 1).

Diphenacylacetic Acids (IIa-h). A 0.015-mole sample of the corresponding ketone was added with stirring in small portions to a mixture of 0.01 mole of benzoylacrylic acid, 1 g of potassium hydroxide, and 10 ml of ethanol, and the mixture was stirred at 30-40°C for 1 h. It was then diluted with ether, and the potassium salt of the diphenylacetic acid was removed by filtration and air dried. The compound was dissolved in water and treated with concentrated HCl at 10°C. The precipitate was removed by filtration, dried, and purified by reprecipitation from alkaline solution by the addition of hydrochloric acid (Table 2).

4-Carboxypyrylium Perchlorates (IIIa-k). A 0.015-mole sample of triphenylmethyl perchlorate was added to a solution of 0.01 mole of the corresponding diphenacylacetic acid in 15 ml of acetic acid, and the mixture was refluxed with stirring for 5 min. It was then cooled, and the product was removed by filtration (Table 3).

2-Carboxynaphtho[2,1-b]pyrylium Perchlorate (IV). A solution of acetyl perchlorate (a mixture of 1 mole of 70% perchloric acid and 3 ml of acetic anhydride) was added to a mixture of 1.72 g (0.01 mole) of 2-hydroxy-1-naphthaldehyde, 10 ml of glacial acetic acid, and 0.1 g of pyruvic acid, and the mixture was heated on a water bath until it turned dark red. It was then cooled and diluted with ether, and the precipitate was removed by filtration, washed with ether, and recrystallized from glacial acetic acid to give 0.4 g (12%) of a product with mp 262°C (dec.). IR spectrum: 1100 (CLO₄⁻); 1565, 1605 (aromatic CH); 1720 (C=0); 3520 cm⁻¹ (OH). Found: C 52.0; H 3.0; C1 9.8%. C14H9ClO7. Calculated: C 51.8; H 2.8; C1 10.2%.

LITERATURE CITED

- S. N. Baranov, M. A. Dumbai, and S. V. Krivun, Khim. Geterotsikl. Soedin., No. 10, 1313 1. (1972).
- 2. K. Undheim and E. T. Ostenen, Acta Chem. Scand., 27, 1385 (1973).
- 3. M. Siemiatycki and M. Fugnitto, Bull. Soc. Chim. France, 538 (1961).
- K. Dimroth, K. Vogel, and W. Krafft, Ber., 101, 2215 (1968). 4.
- 5.
- R. Wizinger and K. Wagner, Helv. Chim. Acta, <u>39</u>, 207 (1956). Yu. P. Andreichikov, N. V. Kholodova, and G. N. Dorofeenko, Khim. Geterotsikl. Soedin., 6. No. 11, 1578 (1975).
- 7. Yu. P. Andreichikov, N. V. Kholodova, and G. N. Dorofeenko, Dokl. Akad. Nauk SSSR, 236, 1364 (1977).